top of page
藍天

對實驗室研究方向有興趣的同學,可先行了解主題或是閱讀已發表內容

E-mail to cwchen@mail.ntut.edu.tw

並歡迎各位同學加入研究團隊

​​

  • ​​Topic 1. 新纖維, 彈性體及超臨界二氧化碳發泡材料合成及其複合材料應用 (Synthesis of Innovative Fibers, Elastomer and scCO2 Foam Materials for Advanced Composite Applications)

  • ​​Topic 2. 合成功能性酯基 Vitrimers:用於進階升級回收應用的解聚和共聚 (Synthesis of Functional Ester-Based Vitrimers: Depolymerization and Copolymerization for Advanced Upcycling Applications)

  • Topic 3. 開發廢棄塑膠再生技術及高值化應用 (Development of Advanced Waste Plastic Recycling Technologies and High-Value Applications)

  • Topic 4. 氣體偵測器及其光催化應用 (Advanced Gas Sensors and Their Photocatalytic Applications)

  • Topic 5. 多尺度模擬輔助新材料設計 (Multiscale Simulation for the Design of Next-Generation Materials)

​研究方向說明:

        研究方向緊密圍繞循環經濟與減碳議題,展現了材料科學在資源閉環利用和碳排放減少中的關鍵角色。新纖維、彈性體及超臨界二氧化碳發泡材料的合成,不僅推動了輕量化與高性能材料的應用,還利用超臨界二氧化碳作為綠色加工介質,減少傳統加工中對化石燃料的依賴,從而降低碳足跡。功能性酯基 Vitrimers 的設計則聚焦於動態可逆鍵結技術,實現了材料的高效解聚與重組,延長產品壽命,促進資源再利用,符合循環經濟的核心理念。氣體偵測器結合光催化技術,提供了一種高效的環境監測與治理手段,能精準捕捉溫室氣體或有害氣體,並藉由光催化過程進行分解,減少大氣中的污染物濃度。此外,針對廢棄塑膠的再生與高值化應用,通過化學回收技術將塑膠廢料轉化為高附加值的功能性材料,不僅緩解了塑膠廢棄物對環境的壓力,還在加工過程中減少了對原生石化資源的需求,實現資源閉環與碳排放的雙重減少。這些研究方向以循環經濟為核心,協同應對碳中和挑戰,從材料設計到資源再利用,構建了一個從源頭減少碳排放到終端回收升值的全過程技術體系,為永續發展提供了實踐藍圖。
     My research directions are closely centered on the circular economy and carbon reduction, demonstrating the crucial role of materials science in resource loop utilization and emissions reduction. The synthesis of new fibers, elastomers, and supercritical CO₂-foamed materials has been advanced not only to promote lightweight and high-performance applications but also to utilize supercritical CO₂ as a green processing medium, thereby reducing reliance on fossil fuels in traditional manufacturing and lowering the carbon footprint. The design of functional ester-based vitrimers has been focused on dynamic reversible bonding technology, allowing for efficient depolymerization and reassembly. Through this approach, product lifespan is extended, resource reutilization is promoted, and alignment with the core principles of the circular economy is ensured. Gas sensors integrated with photocatalytic technology have been developed as an efficient solution for environmental monitoring and remediation, enabling precise detection of greenhouse gases or hazardous pollutants, which are subsequently decomposed through photocatalysis to reduce their atmospheric concentrations. Furthermore, chemical recycling technologies have pursued the regeneration and high-value applications of waste plastics, allowing plastic waste to be converted into high-value functional materials. This approach alleviates environmental pressure from plastic waste, and reliance on virgin petrochemical resources in processing is reduced, contributing to both resource circularity and carbon emission reduction. With the circular economy as the foundation, these research directions have been systematically integrated to support carbon neutrality. From material design to resource reutilization, a comprehensive technological framework has been established to minimize carbon emissions at the source while enhancing value through end-of-life recycling, providing a practical blueprint for sustainable development.

Graphical Abstract - J Polym Environ.jpg
Graphical Abstract - Polymers.jpg
發泡 - J Appl Polym Mater.gif
Graphical Abstract.jpg
Graphical Abstract - J Polym Environ.jpg
Graphical Abstract.R1.jpg
GA - Text Res J.jpg
rPET.jpg
frontpage.jpg
LINE_ALBUM_實驗室團體照_240809_27.jpg
LINE_ALBUM_實驗室團體照_240809_24.jpg
LINE_ALBUM_實驗室團體照_240809_11.jpg
LINE_ALBUM_實驗室團體照_240809_18.jpg
bottom of page